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Abstract

In this work, we experiment with different ap-
proaches that utilize domain-specific BERT and
Bidirectional Long Short Term Memory (Bi-
LSTM) to map key phrases in patient notes
to important medical concepts. Using a col-
lection of patient notes from Step 2 Clinical
Skills examination data from National Board
of Medical Examiners (NBME), we train medi-
cal concept extractors that achieve satisfactory
performance on mapping clinical concept fea-
tures to word sequences expressed in clinical
patient notes. Our best model achieves 0.928
F1 score on the validation set and 0.797 on the
test set.

1 Introduction

Natural Language Processing (NLP) has played
a crucial role in understanding unstructured data
and predictive analysis. It has been utilized in
biomedical and clinical text mining to obtain and
analyze information. Contextualized word embed-
ding models, such as BERT (Devlin et al., 2018)
and domain-specific pre-trained BERT (Alsentzer
et al., 2019), have also been applied to various
NLP tasks such as classification and named entity
recognition. The work of Lybarger et al focused on
extracting patient’s social determinants of health
(SDOH) from hospital readmission notes (Lybarger
et al., 2021). Their work allows clinicians to make
precise decisions that could drive better health out-
comes (Blizinsky KD, 2018). On the other hand,
clinicians are also interested in identifying impor-
tant medical concepts in patient notes using NLP
models. Physicians spend a lot of time on practice
writing patient notes before they are licensed, and
the assessment on the skill of writing patient notes
is a time-consuming task that requires feedback
from other doctors. The appropriate use of NLP
model could reduce a significant amount of time
spent by physicians and serve as a more transpar-
ent and interpretable evaluation method for medical

trainees.
In this work we experiment with different ap-

proaches that utilize domain-specific BERT such
as Bio-Clinical BERT and Bidirectional Long Short
Term Memory (Bi-LSTM) to develop an automated
approach to map key phrases in patient notes to
important medical concepts (features). Using a col-
lection of patient notes from Step 2 Clinical Skills
examination data from National Board of Medi-
cal Examiners (NBME), we train medical concept
extractors that achieve satisfactory performance
on mapping clinical concept features to words ex-
pressed in clinical patient notes.

2 Related Work

2.1 Domain-Specific Contextualized Text
Embedding

Using contextualized word representation model
like BERT obtains state-of-the-art performance on
many NLP tasks. BERT, however, was pre-trained
on general corpora like BooksCorpus and English
Wikipedia. These corpora, although have a large
vocabulary size, might not perform well on down-
stream clinical NLP tasks because domain-specific
proper nouns and terms in medical notes are less
frequent in general corpora. Also, BERT suffers
from fixed input restriction and thus difficult to
apply for medical notes (Hsu et al., 2020).

It is increasingly common to use pre-trained con-
textualized embedding developed on medical cor-
pora. Examples include Med-BERT (Rasmy et al.,
2021), G-BERT (Shang et al., 2019), Bio-BERT
(Lee et al., 2020), and Clinical BERT (Alsentzer
et al., 2019). These pre-trained representation mod-
els differ in the size and type of the training corpus.

Evidence suggests that pre-training BERT with
domain-specific corpora improves the performance
on clinical NLP tasks. Med-BERT (Rasmy et al.,
2021) is pre-trained on a structured electronic
health records (EHR) dataset of approximately



28.5M patients and fine-tuned to outperform mod-
els without contextualized embedding on disease
prediction tasks. G-BERT (Shang et al., 2019)
combines Graph Neural Networks and BERT to
represent medical codes and achieve state-of-art
performance on medication recommendation. Bio-
BERT is pretrained on PubMed abstracts (PubMed)
and PubMed Central full-text articles (PMC), along
with English Wikipedia and BooksCorpus to better
understand complex biomedical texts. It outper-
forms previous models with only general BERT
on tasks such as medical question answering and
relation extraction (Lee et al., 2020). Clinical
BERT and its variants use all note types text data in
MIMIC-III to train BERT-base model, while Dis-
charge Summary BERT only uses the discharge
summary text in MIMIC-III for training (Alsentzer
et al., 2019). Recent work (Alsentzer et al., 2019)
compares Clinical BERT and its variants with
Bio+Clinical BERT (initialized with Bio-BERT
and trained with the same data as Clinical BERT)
on several clinical NLP tasks. Bio+Clinical BERT
and Bio+Discharge Summary BERT obtain im-
provements on accuracy over BERT and Clinical
BERT. They achieve 82.7% accuracy on MedNLI
and high F1 scores on i2b2 2006 (94%), i2b2
2010 (87%), and i2b2 2012 (78.9%). However,
Bio-BERT has the leading performance on i2b2
2006 (94.8%). Overall, the results inform us that
Bio-BERT, Bio-Clinical BERT, and Bio-Discharge
Summary BERT are the appropriate models to start
with for clinical text embedding when analyzing
DBME-Notes data 1.

2.2 Medical Named Entity Recognition

Named entity recognition (NER) is an area where
important nouns and proper nouns in a text is lo-
cated and categorized (Zitouni, 2014). Identifying
medical named entities and relations from medical
records in unstructured text is critical in extracting
certain hidden information in the diagnosis, sup-
porting medical research, and making treatment
decisions (Demner-Fushman, 2009; Liang, 2019).
Yet, complexity of medical text and precise nor-
malization of extracted named entities by mapping
them to concepts make building a practical NER
system difficult.

Studies show that systems based on neural net-
works provide the best performance for NER in
medical notes (Florez, 2018). Algorithms such as

1Resources for these pre-trained BERT

Support Vector Machines (SVMs) and Convolu-
tional Neural Networks (CNN) are commonly used
in NER. For sequence problems, however, Recur-
rent Neural Networks (RNN) models are consid-
ered more appropriate as these models can classify
the input sequence, accounting for the long time de-
pendencies (M. Liwicki and Schmidhuber, 2007).
Still, simple RNN model can face vanishing gra-
dients issue (Bengio, 1994). Accordingly, Long
Short-Term Memory (LSTM), an another RNN ar-
chitecture, is recommended on the state of the art,
given how it uses a short memory connection along
the sequence that can partially resolve vanishing
gradients issue. The model can further improve its
performance by: 1) feeding the network with an
appropriate input representation to provide closer
vectors among related words; and 2) adding addi-
tional features for its input, such as character-level
features from each word extracted using CNN or
LSTM, then concatenating character and word rep-
resentations (Chiu and Nichols, 2015; Z. Liu and
Xu, 2017).

In this work, we will use NER to identify specific
medical concepts, including symptoms, in clinical
patient notes. Depending on sequence problem of
our case, we would consider using bidirectional
LSTM model. In addition, Conditional Random
Fields (CRFs) that takes every neighbour word in
a fixed window of words can be applied to NER
(Z. Liu and Xu, 2017). We could potentially im-
plement a CRF algorithm after the bidirectional
LSTM output.

2.3 Related Work on Event Extraction

Previous work (Lybarger et al., 2018) shows that
neural multi-task learning outperforms discrete
models that require hand-engineered features and
other baselines. However, its corpus is relatively
small and homogeneous in source text (only in-
cludes notes from one institution), which casts
doubts on the generalizability of the model. More
recent work (Lybarger et al., 2021) gives us the
basic understanding on how to utilize deep learn-
ing models for event extraction. Its framework of
event extraction shows satisfactory performance on
Trigger and Labeled argument prediction. How-
ever, their model cannot extract multiple events of
the same type, as it only predicts a single event
of a specific type per sentence. In order to extract
multiple features of the same type for our work, we
can use token-level classifiers to extract locations

https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT


of important medical phrases within a patient note.
Additionally, they use an entire sentence as the in-
put to BERT, and find it hard to identify the span
of events that spread across multiple sentences.

3 Data Overview and Exploratory Data
Analysis

The dataset NBME-Notes is from the Step 2 Clini-
cal Skills examination of the United States Medical
Licensing Examination (USMLE), a major medical
licensure exam co-hosted by Federation of State
Medical Boards (FSMB) and National Board of
Medical Examiners (NBME). This exam measures
a trainee’s ability to identify pertinent clinical facts
during encounters with standardized patients who
are trained to portray a typical clinical case. After
meeting with the patient, the medical trainee docu-
ments the relevant medical facts of the encounter
in a patient note. Trained physicians who score
these notes will then look for the presence of cer-
tain key concepts or features relevant to the case as
described in a rubrics.

The dataset contains physician’s notes on 42,146
patients with 1,000 of them annotated. Annotations
provide the start and end character-level index of
the corresponding medical phrase. Table 1 shows a
sample annotation and the corresponding phrases
in the patient notes.

Table 1: Sample Annotation of NBME Patient Notes

Feature Annotation
Lightheaded ’222 258’

Text
this time had chest pressure

and felt as if he were going to pass out

On Average, these patient notes contain 211.67
tokens (median = 217), and the longest note con-
tains 298 tokens. These length statistics indicate
that we could pass an entire note into a BERT
model without the need to first separate notes at
sentence-level. Prior work (Lybarger et al., 2021)
suggests that breaking notes into sentences and
passing individual sentences into BERT might
make it hard for the model to capture entities that
span across more than one sentence.

1,000 annotated notes are equally distributed
across ten medical cases. The distribution of cases
in the annotated notes is thus very different from
that in the overall dataset that include unlabeled
notes (Fig 1). These medical cases are scenarios

(such as symptoms, complaints, concerns) the stan-
dardized patients presents to the exam taker (medi-
cal student, resident or physician). Annotated notes
contain around 14,300 annotations on 143 features
(medical concepts). Table 2 provides a summary
of the annotated datasets by case, but the mapping
from case numbers to exact scenario names is not
provided in the raw data.

Figure 1: The Distribution of Cases in the Overall
Dataset (N = 42,146)

Table 2: Summary Statistics of the Annotated Dataset

Case # Tokens # Features # Labels
0 209.33 13 9.98
1 217.48 13 9.42
2 225.88 17 9.98
3 204.11 16 11.98
4 203.12 10 7.46
5 210.29 18 11.74
6 212.39 12 9.71
7 215.58 9 6.92
8 224.19 18 11.90
9 194.26 17 9.92

4 Methods

4.1 Pre-Processing

The data consists of three separate files: features,
patient notes, and train data files. Features file
contains the description of each feature, and pa-
tient notes file has patient notes for each case
recorded by the test taker. With train file, we can
get unique feature and patient note ID and key
annotations in patient notes and their correspond-
ing start, end string-level indices, which are con-
verted to token-level labels for training models.
To make our data more interpretable, train data is
merged with features and patient notes files on fea-
ture and patient notes ID. Annotation and location



Figure 2: The model structure and the flow of the input data in the model

columns store the element(s) in a list, but the data
is saved as string type (e.g., "[‘162, 190’]") that
hinders us from iterating over annotation locations
for each case. We pre-process annotation and lo-
cation columns by replacing with a list of integer
elements (e.g., [[162, 190]]) to make annotation
locations easily accessible.

We design the label matrix L as the probability
of each embedding token having a specific fea-
ture. The model predicts this probability as P and
the binary cross entropy between P and L is com-
puted as loss. Specifically, the size of L and P
is (num_batch, num_token, num_feature+1)
where the extra index in feature dimension captures
the case when a given token does not have any fea-
ture. For each token, 1 is assigned to the feature
index if it has that feature, and 1 is assigned to the
last feature index if it does not have any feature.
The final output of the model is the class matrix C
(same size as P ) having 1 for indices with P > 0.5
and 0 for indices with P <= 0.5.

4.2 Models

We experiment with the following four models:

• Bio-Clinical BERT + Bi-LSTM

• Bio-Discharge BERT + Bi-LSTM

• Bio-Clinical BERT

• Distil-BERT

The general model structure is shown in Fig 2. For
the two simpler model without Bi-LSTM, we make
the following adjustment: 1) remove the Bi-LSTM
layer, the dense layer and the Relu layer; 2) in-
crease dropout; 3) train with fewer epochs. We
hypothesize that domain-specific BERT pre-trained
on medical corpora will outperform models trained
on general corpora, and that more complex mod-
els with Bi-LSTM can outperform simpler models.
These models generates token-level predictions that
are later converted to string positions.

4.3 Training

We use 85% of the 1000 patient notes for training
and the rest 15% for validation. The testing set,
which is larger than the training and validation set
combined, is held out by Kaggle.

Accuracy and loss measures are adjusted in the
training process to better accommodate the predic-
tion task. These measures are only calculated using
tokens that have true or predicted labels not equal
to zero. In doing so, we penalize false positive and
false negative errors but avoid inflating the accu-
racy by counting true negative cases where models
successfully predict that a token is not part of any
medical phrase. The training is implemented with
Pytorch on the Google Colab environment with
GPU and we use Adam (Kingma and Ba, 2014)
as the optimizer for all models. Hyperparameter
values can be found in Table 3.

4.4 Evaluation

For given patient notes in the validation and testing
data, models gives the predicted class matrix C,
where each row is a one-hot vector. The locations
of tokens predicted as having a feature (i.e. indices
with Cij = 1), are extracted from C to determine
the feature class. These locations of tokens are
used to identify the start and end string position in
the original text for the associated medical features.
This process is done by getting the locations of each
token embedding from the offset mapping of the
tokenizer. Table 4 shows a synthetic sample label-
prediction pair and the corresponding performance
metrics. For each patient-feature pair, we score
the character-level prediction as one of the three
following metrics:

• True Positive (TP): if a character is within
both a ground-truth and a prediction

• False Negative (FN): if a character is within a
ground-truth but not a prediction

• False Positive (FP): if a character is within a
prediction but not a ground truth



Table 3: Model Hyperparameters

Bio-C + LSTM Bio-D + LSTM Bio-C Distil
Batch size 16 16 16 16

Learning rate 1e-4 1e-4 1e-4 1e-4
# epochs 60 60 25 50

LSTM hiddens ize 256 256 256 256
Dropout 0.1 0.1 0.5 0.5

TP, FN, FP are used to compute Micro-F1 score
on the pooled and case-specific validation dataset.
Kaggle only reports the Micro-F1 on the whole
test set, so we cannot compute case-specific perfor-
mance on the test set.

Table 4: Sample Labels and Predictions at Character-
level

Label Prediction # TP # FN # FP
0 3; 3 5 2 5; 7 9; 2 3 3 2 2

5 Results

5.1 Model Comparison

Fig 3 summarizes the performance of 4 four dif-
ferent models on the validation set and the test
set. Domain-Specific BERT + Bi-LSTM models
have higher F1 scores on the validation and test
set. However, we also observe that the promis-
ing performance on the validation set (F1 score ≈
0.928) does not generalize to the test set (F1 score
≈ 0.8), and our best result is lower than the highest
score 0.89. This indicates that these two models
might overfit on training and validation data. We
also notice that the performance of two simpler
models is comparable to the two complex model,
and we are able to obtain this level of performance
within fewer epochs. This pattern does not support
our hypothesis that using more complex model ar-
chitectures like Bi-LSTM introduces substantial
improvement on prediction tasks.

Another worth-noting result is that the domain-
specific BERT model outperforms general BERT
on identifying medical phrases only by a very small
margin. The simple model with Bio-Clinical BERT
slightly outperforms the one with Distil BERT on
the test set (0.789 vs 0.784), but not on the valida-
tion set (0.911 vs 0.915). Unlike (Alsentzer et al.,
2019; Rasmy et al., 2021), We did not observe sub-
stantial advantages of using domain-specific BERT.

Figure 3: Model Performance on String-level Prediction

5.2 Case-Specific Results

We present the predictive performance of the best
model, Bio-Clinical BERT + LSTM, on each case
in Table 5. This model achieves relatively good
performance on most of the case in the validation
set. The highest F1 score (0.952) is observed on
case 6 and 8. We also investigate feature-level
performance for two cases on which the model
underperforms, case 1 and case 5. It turns out that
the model has a low performance on identifying
associated-nausea (Recall = 0.38, F1 = 0.53) and
Associated-throat-tightness (Recall = 0.61, F1 =
0.75).

Table 5: Predictive Performance of Bio-Clinical BERT
Bilstm Model on the Validation Set

case_num Precision Recall Micro-F1
0 0.851 0.919 0.884
1 0.916 0.914 0.915
2 0.937 0.935 0.936
3 0.937 0.945 0.941
4 0.919 0.948 0.933
5 0.922 0.834 0.876
6 0.932 0.974 0.952
7 0.926 0.969 0.947
8 0.963 0.941 0.952
9 0.930 0.954 0.942



5.3 Error Analysis

We conduct an error analysis on the instances
where we made the most false-positive errors to
identify potential patterns in errors. In Fig 4, we
find that the model is not good at predicting long
annotations with gaps in between, although it is
questionable why this long sequence that describes
the same medical fact is separated into multiple
annotations. Second, the model tends to strongly
associate some words with certain categories. For
example, every occurrence of the word ’palpitation’
is marked as being part of the feature ’Episode of
Heart Racing’. Although the association is indeed
valid, this shortcut taken by the model also leads
to some errors. Additionally, we also find in Fig 5
that the model cannot fully capture the negation in
the sequence. Although it corrects mark the phrase
’chest pain’, it fails to capture the negation ’denies’
that appears much earlier in the sequence. This
incompleteness might propagate erroneous under-
standing into downstream tasks.

6 Limitations

Our best model achieves a promising performance
on the validation set but clearly underperforms on
the testing set. This performance gap indicates po-
tential overfitting. There are two potential reasons
for overfitting. First, the distribution of cases and
features are different in the test set. As we describe
earlier, the 1,000 labeled notes have equally distri-
bution across ten cases but the overall dataset has
a very unequal distribution. Case 3 has more than
9,000 notes, which is ten times more than that in
case 1. This difference in the distribution might
explain why our model fail to generalize its perfor-
mance to the test set, if the test set has a distribution
similar to that in the overall dataset. Second, the
validation set has a relatively small size (N = 150)
and it is possible that we happen to obtain an easy-
to-predict validation set.

Another limitation of our implementation is that
our models only use labeled data in the training
process while the majority of the data (97.6%) is
unlabeled. Others 2 have shown that it is possible to
generate more labeled data using exact matching by
regular expression. This approach, however, might
shift the distribution of the training set. We exam-
ine the labeled data generated with this approach
and find that it is easier to create annotations for

2see https://www.kaggle.com/wuyhbb/get-more-training-
data-with-exact-match

simple features like gender, age, and family his-
tory but much harder to do so for complex features
like Associated-throat-tightness. Additionally, this
approach cannot effectively capture features that
include negations or have large heterogeneity in ex-
pression. Thus, we did not include this additional
annotated data into modeling. Recent work (Ly-
barger et al., 2021) shows that data argumentation
approaches that use active learning to select unla-
beled data could improve the downstream perfor-
mance. Models trained with this augmented dataset
outperform models with other techniques like ran-
dom selection or using only the original annotated
dataset. We consider data argumentation with ac-
tive learning as a more structured and preferable
approach since it utilizes unlabeled data that con-
tains more information. However, we do not imple-
ment it because labeling selected instances requires
domain expertise about clinical scenarios, which is
not possessed by this group of researchers. Future
work can explore whether the data argumentation
technique in Lybarger et al. (2021) generalizes to
this task.

7 Conclusion

In this work, we develop an automated approach to
support physicians in quickly identifying important
medical facts in patient notes. Among the four mod-
els that we train, Bio-Clinical BERT + Bi-LSTM
model achieves the highest F1 score of 0.928 on
validation set, a satisfactory performance on map-
ping important clinical features to words in clinical
patient notes. However, we conclude that there is
space to improve our models to achieve better per-
formance on this task. In-depth investigation on
case-specific result illustrates that the model poorly
predicts phrases associated with nausea and throat
tightness. Noting that the performance of domain-
specific BERT model does not outperform that of
general BERT model significantly, we could utilize
different contextual embedding models, such as
RoBERTa and SpanBERT. In addition, incorpora-
tion of unlabeled data selected by active learning
will increase the number of our training data that
could improve our downstream performance, iden-
tifying key phrases in patient notes.



Figure 4: Error Analysis Sample 1

Figure 5: Error Analysis Sample 2
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